Odorous Compounds Monitoring, Olfactometry, Human Noses? Which Option Should You Choose?

Dispersion study, real-time odour impact, community odour assessment

Odor strategy
Louis VIVOLA
Louis.vivola@Chromatotec.com
Chromatotec : Who are we ?

✓ French manufacturers of autoGC analyzers and all-in-one package solution for gas & odor monitoring

✓ Expert in gas analysis on following markets :
 ▪ Ambient Air
 ▪ Industrial Air
 ▪ Emission CEMS
 ▪ Water Surveillance
 ▪ Gas Process
 ▪ Pure gases
 ▪ Natural gases

✓ Sales repartition:
 ▪ More than 100 analyzers sold per year
 ▪ More than 90% at Export / around 10% in France
Worldwide Presence

Saint-Antoine (33), France
- Chromatotec Group Holding
- Airmotec AG SAS: sales, R&D
- Chromatotec®: cust. & admin. services

Virsac (33), France
- Chromato-Sud SARL – Production site

Houston (USA)
Chromatotec Inc: Sales and cust. service

Beijing (China)
Chromatotec Trading Co., Ltd.: Sales and cust. service
Expert in Gas & Odor analysis

Louis VIVOLA
Sales service Manager

15, Rue d’Artiguelongue ● 33 240 SAINT ANTOINE ● France
Tel: +33 (0) 557 940 627 ● Fax: 33(0)557 940 620 ● Mobile: +33(0)762 667 658
E-mail: louis.vivola@chromatotec.com ● www.chromatotec.com

- Chemist specialized in physicochemical analyses in the Environment sector
- 15 years experience in the management of odours: control, measurement, audit
- Working on field solutions
- X 43 F Expert membership
- Management of customer projects – odour measurement: France, Europe, South America, China, Japan, Korea, India
Solutions provided by Chromatotec

- Modular autonomous autoGC analyzers
 - On-line monitoring 24h/7d
- Automatic analyzer
 - Embedded autocalibration
 - Automatic validation of results
 - Low maintenance
- Sensitive analyzers
 - ppm
 - ppb
 - ppt and now ppq!
- All main existing detectors in the markets
 - FID, PID, TCD, Mass Spectrometry, DID, FTUV...etc
 - Exclusive wet cell detector for Sulfurs, FPD
- Turnkey solutions with all-in-one solution
- Air generators, multi calibration, multiplexer...
Solutions provided by Chromatotec

• Auto GC / Sulfurs analysers
 - Total Sulfurs
 - H2S, SO2, Mercaptans (MM, EM, PM...), DMS, DMDS

• VOC analysers
 - BTEX,
 - Hydrocarbons, C2 to C12 / C10 to C20
 - More than 120 molecules targetted:
 • PAMS + TO 14 & 15...
 • Aromatics
 - Methane and non methanic total hydrocarbons

• Ammonia analyzer
Worldwide recognition with certifications relating to the relevant standards, performed by:

- EN 14662-3 (2013): Method to establish the performance criteria for the measurement of Benzene concentration using an automated sampling pump with in-situ gas chromatography.
 - Laboratory and on-site tests have been passed successfully by the NPL
 - Benzene and 12 other VOCs have been tested

Airmotec/Chromatotec®: Unique manufacturer with EN 14662-3
- En 14662-3: compulsory for ambient air monitoring in Europe
Odorous Compounds Monitoring, Olfactometry, Human Noses? Which Option Should You Choose?

Dispersion study, real-time odour impact, community odour assessment

Odor strategy
Louis VIVOLA
Louis.vivola@Chromatotec.com
Measuring at the source and modeling the impact
Physicochemical approach

• Sensors
 – Pollutant-specific sensors (ppm): H2S, SO2, NH3…
 • Control of odour treatment facilities based on chemical thresholds

• Electronic noses
 – Continuous odour monitoring to define odor concentration

• On line Gas Chromatography
 – Continuous monitoring of multiple compounds to define both odor concentration and gas consumption
Measuring at the source and modeling the impact

Odor approach

- Olfactometry
 - On site sampling
 - Analysis by dynamic olfactometry

- Sulfurs analyser in specific application (WWTP / pulp & paper / mines...)
 - Continuous monitoring of odour index
 - Continuous monitoring of odour, H2S, MM, EM, IPM, DMS, DMDS, THT...
Measuring in the Environment
Continuous measurement – Chemical approach

- **Sensors indicators**
 - Pollutant-specific sensors (ppm)
 - H₂S, RSH
 - NH₃

- **Online Gas Chromatography (ppb)**
 - Continuous monitoring of multiple components with TRS Medor:
 - Odor index
 - H₂S, SO₂
 - Mercaptans (MM, EM, PM, ..etc)
 - DMS, DMDS...etc
Measuring in the Environment
Spot measurement – Odour approach

- Odour mapping – intensity gauging
 - Nose jury on site

- Community odour assessment
 - Reporting of odour from local residents
 - Manual
 - Automatic

- Portable olfactometer
 - 1 port
 - 2 ports
 - 8 ports
Odor & Odorants Measurement challenges

- Reach human nose sensitivity (ppb)
- Offer reliable results with auto datavalidation
- Correlate:
 - with reference methods Dynamic olfactometry EN 13725 or ASTM E679
 - with perception of neighborhood
- Low maintenance

- Why?
 - To have a reliable data to understand what is wrong in the process
 - To manage automatically the process to treat odors
 - To be alerted and warned when odor or odorants exceed specific values at source or environment
Odor & Odorants Measurement challenges

- Find a solution to face to limitation of current method for sulfurs emissions site
- Chemical approach to quantify leakage around the site as the solutions are sensitive on same level than human nose
- Automatic calibration and validation of data
- Correlate with olfactometry and neighborhood perception, when complaints occur
- Capabilities to check process performances
- Capabilities to use reliable results with unique instrument and multiplexer
The vigiODOR® interface is dedicated for monitoring odorous and chemical panches in industrial zones.

Associated with gas analyzers trsMEDOR, airmoVOC and vigi-eNose, this interface provides easily a monitor for concentrations of gas, sulfured, and odor concentration.

The operator is noticed in case of overrun of concentration thresholds for one or more pollutants.
• Vigi e-NOSE is the analytical device of vigiODOR solution

• The analyzer is the most sensitive GC Electronic nose on the market for sulfurs quantification (ppt/ ppq)
 – Includes trsMEDOR with SSD & VOC detector
 – Allows to measure:
 – Total Sulfurs
 – H₂S, SO₂, Mercaptans (Me-SH, Et-SH...)
 – Sulfides (DMS, DMDS)
 – VOC detector (PID or FID)
 – It provides individual quantification of sulfurs & tVOC with a global chemical and olfactory fingerprint
 – Correlation with sensory evaluation

• Local weather station
• Modular modeling software
• Complaints Management tools
vigiODOR solution: a compliant solution for specific legislation

International Method
- ASTM D7493 08
- ISO 19739

Monitoring of Each Odorous Component
- H$_2$S
- OSC (Organic Sulphur Compounds)
- DMS, DMDS, Methyl Mercaptan, Ethyl Mercaptan, DES, ...
- tVOC (Total Volatile Organic Compounds)
- Option for NH$_3$ (Ammonia)

Unsurpassed Performances
- Lower detection limits: < 1 ppb for H$_2$S & DMS
- Interferences free
- Large ranges from ppb to hundreds of ppm concentrations
vigiODOR solution: all-in-one solution with peripherals management

- Multiplexer for multiple points collection
- Automatic Calibration and results validation
- Air generator
- Hydrogen generator

>> turnkey solution
vigiODOR: results at a glance

The vigiODOR® interface is dedicated for monitoring odorous and chemical panches in industrial zones.

Associated with gas analyzers trsMEDOR, airmoVOC and vigi-eNose, this interface provides easily a monitor for concentrations of gas, sulfured, and odor concentration.

The operator is noticed in case of overrun of concentration thresholds for one or more pollutants.
Example of deployment in WWTP
Results

- **Spectrum with 14 compounds**

 - Hydrogen Sulphide: H_2S
 - Methyl Mercaptan (MM or MTM): CH_3-SH
 - Ethyl Mercaptan (EM or ETM): CH_3CH_2-SH
 - DiMethyl Sulphide (DMS): CH_3-S-CH_3
 - (Iso) 2-Propyl Mercaptan (IPM): $(CH_3)_2-CH-SH$
 - Ter Butyl Mercaptan (TBM): $(CH_3)_3-C-SH$
 - (N) 1-Propyl Mercaptan (NPM): $CH_3CH_2CH_2-SH$
 - TetraHydroThiophene (THT): C_4H_8S
 - DiEthyl Sulphide (DES): $C_2H_5-S-S-C_2H_5$
 - DiMethyl DiSulphide (DMDS): $CH_3-S-S-CH_3$
23/09/2015

vigioDOR solution
example of results in ambient air

- 24/7 unattended online air monitoring system dedicated on sulfur compounds quantification.
 - Mercaptans: Methyl Mercaptan (Me-SH), Ethyl Mercaptan (Et-SH)
 - Sulfurs: Diethyl sulfur (DES), dioxyde sulfur (SO₂), Di Méthyl-Sulfur (DMS)

\[
\begin{align*}
\text{DMDS} & \quad 63 \text{ ppb} \\
\text{H}_2\text{S} & \quad 60 \text{ ppb} \\
\text{SO}_2 & \quad 13 \text{ ppb} \\
\text{Methyl SH} & \quad 103 \text{ ppb} \\
\text{DMS} & \quad 273 \text{ ppb}
\end{align*}
\]

- Automatic datavalidation as trsMEDOR includes automatic calibration in standard with permeation tube using DMS at 25 ppb.

23/09/2015
Map for chemicals or Odors
Results - Identification of odor sources
Integration of complaints management with TOMS interface
vigiODOR: a dedicated odor solution

Interest of the vigiODOR solution

• Meet legislation requirements and designed according to the objectives
• Clear understanding of odor & odorants origins
• Facilitates communication with Residents, Associations & Authorities
• Be alerted when emissions limits are exceeded
• Anticipate nuisance and treat emissions before they affect neighborhood
• Optimize process operations in order to reduce chemical and odor emissions
• Have an auto validation of the results
vigiODOR®

On line quantification of Odor, VOC & Sulfurs

ppt/ppb/ppm

On line monitoring with trs MEDOR
Dispersion modeling software
Dynamic olfactometry

MEDOR analyzer for odorants

www.chromatotec.com / info@chromatotec.com
vigiODOR solution:
online sulfurs monitoring

- Online monitoring with trend profile over time and datahistorical access

- Sensitivity at ppb levels (ppt upon request)
vigiODOR solution – SULFUR Analyzer
Tests performances vs Human nose

<table>
<thead>
<tr>
<th>Sulfur Compounds</th>
<th>Compound</th>
<th>Characteristic odor</th>
<th>Olfactive odor threshold</th>
<th>µg/m³</th>
<th>ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydrogen sulfide</td>
<td>Rotten Egg</td>
<td>1 to 5</td>
<td>0.7 to 3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Methylmercaptan</td>
<td>Cabbage, garlic</td>
<td>4 to 50</td>
<td>2 to 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethylmercaptan</td>
<td>Cabbage</td>
<td>0.3 to 3</td>
<td>0.12 to 1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimethyl sulfide</td>
<td>Decayed vegetables</td>
<td>3 to 30</td>
<td>1.2 to 12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Dimethyl disulfide</td>
<td>Putrid</td>
<td># 50</td>
<td># 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diethyl sulfide</td>
<td>Ethereal</td>
<td>45 to 310</td>
<td>12 to 85</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Iso Propyl Mercaptan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

- *trsMEDOR is a turnkey solution able to offer more sensitive level of concentration in comparison with human nose*
<table>
<thead>
<tr>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
<th>C10</th>
<th>C11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Ethane = C2</td>
<td>3) Propane = C3</td>
<td>6) n-butane = C4</td>
<td>13) n-pentane = C5</td>
<td>22) n-hexane = C6</td>
<td>25) 2,4-dimethylpentane</td>
<td>44) n-nonane = C9</td>
<td>52) n-Decane = C10</td>
<td>52) n-Undecane</td>
<td></td>
</tr>
<tr>
<td>2) Ethene / ethylene</td>
<td>4) Propene</td>
<td>7) Acetylene</td>
<td>14) trans-2-pentene</td>
<td>23) isoprene</td>
<td>26) Benzene</td>
<td>45) iso propylbenzene</td>
<td>53) 1,2,3 trimethylbenzene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) isobutane (2-méthyl propane)</td>
<td>8) trans-2-butène</td>
<td>9) 1-butene</td>
<td>15) 1-pentene</td>
<td>24) 2-methyl-1-pentene</td>
<td>27) Cychohexane</td>
<td>46) n-propylbenzene</td>
<td>54) m-diethylbenzene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10) cis-2-butène</td>
<td>11) Cyclopentane</td>
<td>16) cis-2-pentène</td>
<td></td>
<td>28) 2-methylhexane</td>
<td>47) m-ethyltoluene</td>
<td>55) p-diethylbenzene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12) Iso-pentane (2-methyl butane)</td>
<td></td>
<td>17) 2,2-dimethylbutane</td>
<td></td>
<td>29) 2,3-dimethylpentane</td>
<td>48) p-ethyltoluene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18) methylcyclopentane</td>
<td>19) 2,3-dimethylbutane</td>
<td></td>
<td>30) 3-methylhexane</td>
<td>49) 1,3,5 trimethylbenzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20) 2-methylpentane</td>
<td>21) 3-methylpentane</td>
<td></td>
<td>31) 2,2,4-trimethylpentane</td>
<td>50) o-ethyltoluene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22) n-hexane = C6</td>
<td>25) 2,4-dimethylpentane</td>
<td>38) n-octane = C8</td>
<td>44) n-nonane = C9</td>
<td>52) n-Decane = C10</td>
<td>52) n-Undecane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26) Benzene</td>
<td>39) Ethylbenzene</td>
<td>45) iso propylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27) Cychohexane</td>
<td>40) m-xylene</td>
<td>46) n-propylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28) 2-methylhexane</td>
<td>41) p-xylene</td>
<td>47) m-ethyltoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29) 2,3-dimethylpentane</td>
<td>42) Styrene</td>
<td>48) p-ethyltoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30) 3-methylhexane</td>
<td>43) o-xylene</td>
<td>49) 1,3,5 trimethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31) 2,2,4-trimethylpentane</td>
<td></td>
<td>50) o-ethyltoluene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51) 1,2,4 trimethylbenzene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

>> 24/7 unattended online air monitoring system dedicated on VOC compounds quantification provided as trsMEDOR upgrade to provide full olfactive & chemical compounds overview
Example of results for VOC monitoring C2 – C6
Example of results for VOC monitoring C2 – C6
vigiODOR solution – VOC Analyzer Tests performances vs Human nose

<table>
<thead>
<tr>
<th></th>
<th>Compound</th>
<th>Characteristic odor</th>
<th>Olfactive odor threshold µg/m³</th>
<th>ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehydes</td>
<td>Formaldehyde</td>
<td>Pungent</td>
<td>65 to 1200</td>
<td>53 to 978</td>
</tr>
<tr>
<td></td>
<td>Acetaldehyde</td>
<td>Fruit, apple</td>
<td>50 to 300</td>
<td>28 to 167</td>
</tr>
<tr>
<td></td>
<td>Propionaldehyde</td>
<td>Rancid</td>
<td>#20</td>
<td>#8.4</td>
</tr>
<tr>
<td></td>
<td>Butyraldehyde</td>
<td>Apple</td>
<td>20 to 50</td>
<td>7 to 17</td>
</tr>
<tr>
<td></td>
<td>Valeraldehyde</td>
<td>Fruit</td>
<td>20 to 70</td>
<td>5.7 to 20</td>
</tr>
<tr>
<td></td>
<td>Acetone</td>
<td>Sweet fruit</td>
<td>119 000</td>
<td>50 000</td>
</tr>
<tr>
<td>Volatile Fatty Acids</td>
<td>Acetic</td>
<td>Vinegar</td>
<td>#900</td>
<td>#366</td>
</tr>
<tr>
<td></td>
<td>Propionic</td>
<td>Rancid</td>
<td>#80</td>
<td>#26</td>
</tr>
<tr>
<td></td>
<td>Butyric</td>
<td>Rancid butter</td>
<td>4 to 50</td>
<td>1 to 14</td>
</tr>
<tr>
<td></td>
<td>Valeric</td>
<td>Perspiration</td>
<td>#5</td>
<td>#1.2</td>
</tr>
</tbody>
</table>

=> airmOZONE is a turnkey solution able to offer more sensitive level of concentration in comparision with human nose.
Odor analyzer

VOCs

- DMDS 63 ppb
- H₂S 60 ppb
- SO₂ 13 ppb
- Methyl SH 103 ppb
- DMS 273 ppb

Sulfurs

- DMDS 63 ppb
- H₂S 60 ppb
- SO₂ 13 ppb
- Methyl SH 103 ppb
- DMS 273 ppb

Odor Index

23/09/2015
vigiODOR

- Solution to manage measurement units with alerts and warning
- Validation of results including embedded permeation tube
- Capabilities to work from ppb to ppm with same equipment
- Correlation done with portable olfactometer or direct observatoire using complaints / sensory observation
- Reliable & objective results in WWTP to facilitate communication with neighborhood
 - Capabilities to integrate full package (dispersion & complaints management) to check impact and validity of prediction
 - Option: Correlation with EN 13725 in WWTP
Conclusion

• Very large range of products available and designed according to Market’s needs
 – VOC, Sulfurs, nitrogenous
 – 24h /7 days measurements

• Large range of concentration level from ppt to ppb and ppm

• Turnkey solutions:
 – Instruments
 – Multiplexers
 – Air generators

• Capability to work on hazardous area:
 – ATEX Ex II 3G Ex pz IIC T4
Conclusions

• Unique technology for sulfur quantification at low concentration levels
• Modular and innovative solutions according to your customer’s needs on hardware & software part
• Equipments 100 % Hand made and control with French Quality
• Solutions recognized as performant with amount of certifications
• Capabilities to check results with:
 – Automatic calibration on analyzers
 – Automatic complaints management
Thank you for your attention!

Come and visit our Chromatotec Booth

Come and visit our local partner Booth WESTECH

>> Contact: louis.vivola@chromatotec.com

>> know more: www.chromatotec.com